AI in NHS and Social Care
pdf

Keywords

AI
NHS
UK
Socialcare

How to Cite

Aravind Shetty, A. R., Kolli, S., Pasupuleti, S. S. T., & Singh, A. (2025). AI in NHS and Social Care: commentary. The Physician, 9(3), 1-8. https://doi.org/10.38192/1.9.3.6

Abstract

This commentary explores the potential of AI in transforming the NHS and social care in the UK to address challenges like health disparities and chronic diseases. It outlines various applications of AI in different healthcare domains, including pre-hospital health monitoring, elective care waiting lists, triaging, online treatment, diagnosis, imaging, electronic prescribing, and customizing treatment. Leveraging AI can identify vulnerable populations and reduce health disparities. However, it also emphasises the need for further research and careful consideration of ethical and privacy concerns to maximise the benefits of AI integration in healthcare. Overall, AI offers innovative solutions to enhance healthcare delivery and improve public health outcomes.

https://doi.org/10.38192/1.9.3.6
pdf

References

McKee, M., Suhrcke, M., Nolte, E., Lessof, S., Figueras, J., Duran, A., et al. Health systems, health, and wealth: a European perspective. *Lancet* **373**, 349–351 (2009). doi: [10.1016/S0140-6736(09)60107-5](https://doi.org/10.1016/S0140-6736(09)60107-5)

Leon, D.A., Jdanov, D.A., & Shkolnikov, V.M. Trends in life expectancy and age-specific mortality in England and Wales, 1970–2016, in comparison with a set of 22 high-income countries: an analysis of vital statistics data. *Lancet Public Health* **4**, e575–e582 (2019). doi: [10.1016/S2468-2667(19)30192-7](https://doi.org/10.1016/S2468-2667(19)30192-7)

Quayle, G. Child and infant mortality in England and Wales - Office for National Statistics [Internet]. *Office for National Statistics*. Available at: [https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/childhoodinfantandperinatalmortalityinenglandandwales/2019](https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/childhoodinfantandperinatalmortalityinenglandandwales/2019) (2021).

Maguire, D., Honeyman, M., Fenney, D., & Jabbal, J. *Shaping the future of digital technology in health and social care*. *The King's Fund*. Available at: [https://www.kingsfund.org.uk/publications/future-digital-technology-health-social-care](https://www.kingsfund.org.uk/publications/future-digital-technology-health-social-care) (2021).

Harwich, E. & Laycock, K. *Thinking on its own: AI in the NHS*. Reform Research Trust (2018). Available at: [https://www.reform.uk/research/thinking-its-own-ai-nhs](https://www.reform.uk/research/thinking-its-own-ai-nhs)

NHS. NHS Transformation Directorate. Using Artificial Intelligence-enabled technology to telephone patients on the elective care waiting list. *NHS Transformation*. Available at: [https://transform.england.nhs.uk/key-tools-and-info/digital-playbooks/musculoskeletal-digital-playbook/Using-artificial-intelligence-enabled-technology-to-telephone-patients-on-the-elective-care-waiting-list](https://transform.england.nhs.uk/key-tools-and-info/digital-playbooks/musculoskeletal-digital-playbook/Using-artificial-intelligence-enabled-technology-to-telephone-patients-on-the-elective-care-waiting-list/) (2023).

NHS E. NHS Accelerated Access Collaborative » NHS Innovation Accelerator [Internet]. Available at: [https://www.england.nhs.uk/aac/what-we-do/how-can-the-aac-help-me/nhs-innovation-accelerator/](https://www.england.nhs.uk/aac/what-we-do/how-can-the-aac-help-me/nhs-innovation-accelerator/) (2023).

NHS E. NHS Chief launches new fast-track funding so NHS patients get treatment innovations faster. Available at: [https://www.england.nhs.uk/2016/06/treatment-innovations/](https://www.england.nhs.uk/2016/06/treatment-innovations/) (2016).

Russell, G. AI: will the machines save the world (and make me redundant)? Available at: [https://www.bdct.nhs.uk/wp-content/uploads/2018/06/Gregor-Russell-CLEAR-big-debate.pdf](https://www.bdct.nhs.uk/wp-content/uploads/2018/06/Gregor-Russell-CLEAR-big-debate.pdf) (2017).

Qiu, H., Ding, S., Liu, J., Wang, L., & Wang, X. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. *Curr Oncol* **29**, 1773–1795 (2022). doi: [10.3390/curroncol29030172](https://doi.org/10.3390/curroncol29030172)

Vujosevic, S., Aldington, S.J., Silva, P., Hernández, C., Scanlon, P., Peto, T., et al. Screening for diabetic retinopathy: new perspectives and challenges. *Lancet Diabetes Endocrinol* **8**, 337–347 (2020). doi: [10.1016/S2213-8587(20)30096-0](https://doi.org/10.1016/S2213-8587(20)30096-0)

53-hospital-electronic-prescribing-and-medicines-administration-evaluation-reportpdf.pdf. Available at: [https://sbuhb.nhs.wales/about-us/key-documents-folder/quality-and-safety-committee-papers/quality-and-safety-committee-july-2022/53-hospital-electronic-prescribing-and-medicines-administration-evaluation-reportpdf/](https://sbuhb.nhs.wales/about-us/key-documents-folder/quality-and-safety-committee-papers/quality-and-safety-committee-july-2022/53-hospital-electronic-prescribing-and-medicines-administration-evaluation-reportpdf/)

Carceller, F. Artificial Intelligence used to identify new drug combination for children with incurable brain cancer | The Royal Marsden. Available at: [https://www.royalmarsden.nhs.uk/artificial-intelligence-used-identify-new-drug-combination-children-incurable-brain-cancer](https://www.royalmarsden.nhs.uk/artificial-intelligence-used-identify-new-drug-combination-children-incurable-brain-cancer) (2021).

University of Cambridge. AI cuts waiting times for cancer patients in NHS first. Available at: [https://www.cam.ac.uk/research/news/ai-cuts-waiting-times-for-cancer-patients-in-nhs-first](https://www.cam.ac.uk/research/news/ai-cuts-waiting-times-for-cancer-patients-in-nhs-first) (2023).

Phillips, A. & Modenese, L. Musculoskeletal modelling. *Imperial College London*. Available at: [https://www.imperial.ac.uk/a-z-research/structural-biomechanics/projects/msk-modelling/](https://www.imperial.ac.uk/a-z-research/structural-biomechanics/projects/msk-modelling/)

Modenese, L., Gopalakrishnan, A., & Phillips, A.T.M. Application of a falsification strategy to a musculoskeletal model of the lower limb and accuracy of the predicted hip contact force vector. *J Biomech* **46**, 1193–1200 (2013). doi: [10.1016/j.jbiomech.2013.01.013](https://doi.org/10.1016/j.jbiomech.2013.01.013)

Mokhtarzadeh, H. Revolutionizing Biomechanics: Integrating AI, Collaborative Coding Environments, and Simulation Software for Enhanced Model Development and Analysis (2023).

O'Connor, S., Gasteiger, N., Stanmore, E., Wong, D.C., Lee, J.J. Artificial intelligence for falls management in older adult care: A scoping review of nurses' role. *J Nurs Manag* **30**, 3787–3801 (2022). doi: [10.1111/jonm.13642](https://doi.org/10.1111/jonm.13642)

Kenny, R.A., Romero-Ortuno, R., & Cogan, L. Falls. *Medicine* **41**, 155–159 (2013). doi: [10.1016/j.mpmed.2012.11.010](https://doi.org/10.1016/j.mpmed.2012.11.010)

Schoene, D., Heller, C., Aung, Y.N., Sieber, C.C., Kemmler, W., Freiberger, E. A systematic review on the influence of fear of falling on quality of life in older people: is there a role for falls? *Clin Interv Aging* **14**, 701–719 (2019). doi: [10.2147/CIA.S197775](https://doi.org/10.2147/CIA.S197775)

Ng, Z.Q.P., Ling, L.Y.J., Chew, H.S.J., Lau, Y. The role of artificial intelligence in enhancing clinical nursing care: A scoping review. *J Nurs Manag* **30**, 3654–3674 (2022). doi: [10.1111/jonm.13637](https://doi.org/10.1111/jonm.13637)

Usmani, S., Saboor, A., Haris, M., Khan, M.A., & Park, H. Latest Research Trends in Fall Detection and Prevention Using Machine Learning: A Systematic Review. *Sensors (Basel)* **21**, 5134 (2021). doi: [10.3390/s21155134](https://doi.org/10.3390/s21155134)

Nowakowski, K., El Kirat, K., & Dao, T.T. Deep reinforcement learning coupled with musculoskeletal modelling for a better understanding of elderly falls. *Med Biol Eng Comput* **60**, 1745–1761 (2022). doi: [10.1007/s11517-022-02589-w](https://doi.org/10.1007/s11517-022-02589-w)

NHS E. NHS Transformation Directorate. Examining whether recruitment data can, and should, be used to train AI models for shortlisting interview candidates. Available at: [https://transform.england.nhs.uk/ai-lab/explore-all-resources/develop-ai/examining-whether-recruitment-data-can-and-should-be-used-to-train-ai-models-for-shortlisting-interview-candidates/](https://transform.england.nhs.uk/ai-lab/explore-all-resources/develop-ai/examining-whether-recruitment-data-can-and-should-be-used-to-train-ai-models-for-shortlisting-interview-candidates/) (2023).

Nawaz, N. Artificial Intelligence Interchange Human Intervention in the Recruitment Process in Indian Software Industry. *Rochester, NY* (2019). Available at: [https://papers.ssrn.com/abstract=3521912](https://papers.ssrn.com/abstract=3521912)

Fraij, J., & Várallyai, L. Literature Review: Artificial Intelligence Impact on the Recruitment Process. *Int. J. Eng. Manag. Sci.* **6**, 108–119 (2021).

Nawaz, N. How Far Have We Come With The Study of Artificial Intelligence for Recruitment Process. (2019).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Array